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With the recent explosion in usage of the world wide web, the problem of caching

web objects has gained considerable importance. Web caches cannot only reduce

server load, network traÆc and downloading latency by replicating popular web ob-

jects on proxy caches. The performance of these web caches is highly a�ected by the

replacement algorithm. Today, many replacement algorithms have been proposed

for web caching and these algorithms use the other on-line fashion parameters like

size, temporal locality and latency to de�ne the object popularity rather than the

object popularity value directly from the cache, especially in the Size Adjust LRU

which uses size and temporal locality. But, recent studies suggest that the correla-

tion between the on-line fashion parameters , especially temporal locality and the

object popularity in the proxy cache is weakening due to the eÆcient client caches.

In this paper, we suggest a new algorithm, called Least Popularity Per Byte Replace-

ment( LPPB-R ). This LPPB-R algorithm is the extension of the Size Adjust LRU.

We use the popularity value as the long-term measurements of request frequency to

complement the weak point in the temporal locality and vary the popularity value

by changing the impact factor easily to adjust the performance to needs of the proxy

cache. In addition, we apply the multi queue by managing the objects and the meta

information and suggest a technique for managing objects to avoid the cache pollu-

tion phenomenon. And we examine the performance of this and other replacement

algorithm via trace driven simulation.
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1. Introduction

The recent increase in popularity of the World Wide Web has led to a considerable

increase in the amount of traÆc over the Internet. As a result, the Web has now

become one of the primary bottlenecks to network performance. When objects are

requested by a user who is connected to a server on a slow network link, there is

generally considerable latency noticeable at the client end. Further, transferring the

object over the network leads to an increase in the level of traÆc. This has the e�ect

of reducing the bandwidth available for competing requests, and thus increasing

latencies for other users. In order to reduce access latencies, it is desirable to store

copies of popular objects closer to the user.

Consequently, web caching has become an increasingly important topic [1] [10].

Web caching aims to reduce network traÆc, server load, and user-perceived retrieval

delay by replicating popular content on caches that are strategically placed within

the network. Caching can be implemented at various points in the network. In

the server side, there is typically a cache in the Web server itself and there is a

cache which behaves like a web server accelerator. In the opposite side, there are

client caches in the Web browsers. And it is increasingly common for a university or

corporation to implement specialized servers in the network called caching proxies [2].

Figure 1.1 shows the various caching points. In this paper, we shall discuss the cache

replacement policies designed speci�cally for use by proxy web caches.

In the recent studies, we can �nd several important reasons why many people

try to enhance the performance of proxy caches by using the eÆcient replacement

policy. First, the growth rate of Web capacity is much higher than the rate with

which memory sizes for Web caches are likely to grow [2] [3]. This tell us that we

need much more storage cost to get more Hit Rate by using the same replacement

1



HTTP
server

HTTP
server

HTTP
server

Proxy
Cache

client

client

client

client
Client side
Cache

Server side
Cache

Server side
Cache

Server side
Cache

Client side
Cache

Client side
Cache

Client side
Cache

Figure 1.1: Various caching points

policy. Second, recent studies have shown that Web cache Hit Ratio and Byte Hit

Ratio grow in a log-like fashion as a function of the cache size [4] [5]. Thus, a better

algorithm that increases Hit Ratio and Byte Hit Rate by only several percentage

points would be equivalent to a several fold increase in cache size. Third, for an

in�nite sized cache, the Hit Ratio for a web proxy grows in a log-like fashion as a

function of the client population of the proxy and of the number of requests seen by

the proxy [4] [5]. In this case, we get the same result as the result from second reason.

Then, when we use a better replacement policy, the proxy can serve much more

clients and requests than before. Finally, the bene�t of even a slight improvement

in cache performance may have an appreciable e�ect on network traÆc.

Today many replacement algorithms have been proposed for web caching. We

have studied several algorithms from simple to complex. According to these re-

searches, we classify the replacement algorithms into three categories. ( Traditional

algorithm, Key-based Algorithm, Function-based Algorithm ). In the beginning

to implement proxy cache, most proxy caches use traditional algorithms like LRU,

2



LFU. Because these algorithms are easy to implement and to manage, and the using

in main memory paging proves that these are robust. But these algorithms don't

consider the web characteristic.

Key-based algorithms are proposed by using several parameters like an object

size, a latency, a last access, references, long-term frequency. Key-based algorithms

evict objects based on a primary key, break ties based on a secondary key, break

remaining ties based on a tertiary key, etc. There are LFF [3], LRU-min [3], Hyper-

G [3], Lowest-Latency First [6]. But these algorithms are good for a speci�c metric.

For example, size parameter is good for Hit Rate, but it is not good for other metrics.

So when we use LFF for the proxy cache, we get very high Hit Rate, but get poor

Byte Hit Rate.

To cover this limitation, recent researches propose Function-based algorithms.

These algorithms use the object utilization that is calculated by many parameters

which relate to web characteristics. There are many policies, like Hybrid [6], Greedy

Dual-Size [5], Size-adjust LRU [7], to make the performance of proxy caches better

than before. The object utilization which used by these algorithms infer the pop-

ularity of the object. But in the most algorithms, this utilization is calculated by

estimate value like a size, a latency, a last access rather than the direct popular-

ity value of object like the relative access frequency or reference counts through a

proxy. Especially in the case of Size-adjust LRU, this algorithm use the size and the

last access number to get the object utilization. Each of these parameters means

the negative correlation between the popularity and the object size, and temporal

locality in a request stream. Both of these are assumed to be indicative of the future

popularity of the object, and hence reective of the merit of keeping such and object

in the cache. But recent studies [9] suggest that such relationships are weakening

and hence may not be e�ective in capturing the popularity of Web objects.

In this paper, we suggest a new algorithm, called Least Popularity Per Byte

Replacement( LPPB-R ). This LPPB-R algorithm is an function-based algorithm.
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The purpose of the LPPB-R is to make the popularity per byte of the outgoing

objects to be minimum. When an object is to be inserted into the cache, the LPPB-

R calculates the utilization of each object, then evict the object which has smallest

utilization. This utilization value is calculated by using the popularity and the size.

In this point, we have a di�erence between LPPB-R algorithm and the others. The

LPPB-R algorithm is the extension of SLRU that uses temporal locality and size

by the main parameters to calculate the utilization. The LPPB-R algorithm uses

the object popularity parameter, which is not considered by SLRU algorithm, from

proxy cache directly, to make up for the weak points in the SLRU algorithm.

According to the recent studies [9], we know the relationship of the temporal

locality and the popular object is weakening in these days. One reliable reason for

getting this result is the eÆcient client caching. Therefore, the eÆcient client caching

deals with the short-term measurement of request frequency like temporal locality

property. Then, to get better performance of the proxy cache, the proxy cache

should deal with the long-term measurement of request frequency. Consequently,

we use the object popularity as the long-term measurement of request frequency.

And because how to set the popularity value determines the performance of this

LPPB-R algorithm, we suggest the 2 type of calculating the popularity value. One

is the simple mechanism by using the reference count, the other is the advanced

mechanism by using the reference count as the power factor of the impact factor.

Then, we want to accommodate a variety of performance goals by changing the �

value which is the impact factor.

In addition, we use the multi queue by managing the objects and the meta infor-

mation in the cache, to make the LPPB-R algorithm more practical and to reduce

the overhead which is needed by calculating the utilization values and processing the

requests. And because our LPPB-R algorithm has the LFU property by using the

popularity value, we must consider the cache pollution phenomenon. Therefore, we

suggest a technique for managing objects to avoid the cache pollution phenomenon.
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The paper is organized as follows. In section 2, we describe several related

works about the replacement algorithm. Section 3 introduce our new replacement

algorithm , LPPB-R. The simulation environment and the performance evaluation

are given in section 4. We conclude the paper in section 5. Finally, we suggest

future works in section 6.
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2. Related Work

A key aspect of the e�ectiveness of proxy caches is a document replacement algorithm

that can yield high hit rate. There are many replacement algorithms to obtain

better performance of proxy caching, from simple to complex. They attempt to

minimize various cost metrics, such as hit rate, byte hit rate, and average latency.

We classify these algorithms into three categories; Traditional algorithm, Key-based

algorithm, and Function-based algorithm. Bellow we give a description of all of

them. In describing the various algorithms, it is convenient to view each request

for a document as being satis�ed in the following way. The algorithm brings the

newly requested document into the cache and then checks that the document is in

the cache. If it is in the cache, the cache just updates the hit information, otherwise,

evicts other documents for the new document until the capacity of the cache is

no longer exceeded. Algorithms are then distinguished by how they choose which

documents to evict.

2.1 Traditional Replacement algorithm

There are Least Recently Used ( LRU ), Least Frequently Use ( LFU ), First In

First Out ( FIFO ), and etc. in this category. These algorithms are well-known

cache replacement strategies for paging scenarios. These algorithms are simple and

well-managed, so in the beginning to implement proxy cache, most proxy caches

apply these to replacement algorithms. We briey survey several algorithms below.

� Least Recently Used ( LRU )

LRU evicts the object which was requested the least recently. LRU leverages

temporal locality of reference. It means recently accessed objects are likely to

6



be accessed again. It can be implemented easily with O(1) overhead per one

request.

� Least Frequently Used ( LFU )

LFU evicts the object, which is accessed least frequently. LFU leverages the

skewed popularity of objects in a reference stream. It means that objects

frequently accessed in the past are likely to be accessed again in the future.

� First In First Out ( FIFO )

FIFO evicts the object, which is the last content of the queue. The newly

requested document is brought into the head of the queue. FIFO leverages the

fairness of the request stream. But FIFO is rarely used in the pure form.

These traditional algorithms are used widely, because of their simplicity and

robust feature. But at �rst time, these algorithms are suggested for homogeneous

paging caching. So these are not satis�ed the web environment, whose traÆcs have

the nonhomogeneous feature, the variable latency, the dynamic relative frequency

of request, and etc. Namely, the diÆculty with such algorithms in this category is

that they fail to pay suÆcient attention to the characteristic of Web.

2.2 Key-based Replacement algorithm

The algorithms in this category enhance the performance of proxy caching by apply-

ing the web characteristics to the traditional algorithms. The main idea in key-based

policies is to sort objects based upon a primary key, break ties based on a secondary

key, break remaining ties based on a tertiary key, and so on. There are size, latency,

reference count, last access and etc which are used as the keys. Figure 2.1(a) show

the conceptional process of the generation from traditional algorithms to key-based

algorithms. And Some examples of key-based algorithms are illustrated in Table 2.1.

� Large File First ( LFF ) [3]

LFF evicts the largest object. It can be implemented by maintaining a priority

7



Name Primary Key Secondary Key Tertiary Key

LFF Size Time Since Last Access

LOG2SIZE blog2(size)c Time Since Last Access

LLF Latency

HYPER-G Frequency of Access Time Since Last Access Size

Table 2.1: Examples of key-based algorithms

queue of the objects in the memory biased on their size. It has O(1) overhead

per one request, but it has sorting overhead O(logk) per one request.

� LRU-MIN [1]

LRU-MIN is biased in favor of smaller objects. If there are any objects in

the cache which have size at least S, LRU-MIN evicts the least recently used

such object from the cache. If there are no objects with size at least S, then

LRU-MIN starts evicting objects in LRU order of size at lease S/2. That is

the object who has the largest log(size) and is the least recently used object

among all objects with the same log(size) will be evicted �rst.

� LOG2SIZE [1]

LOG2SIZE is biased in favor of smaller objects more than LRU-MIN. In

LOG2SIZE, how to manage the objects is similar to LRU-MIN. But the dif-

ference between of them is how to evict the objects. LOG2SIZE evicts the

largest and lease recently used object. Namely, LOG2SIZE is the mixture of

LFF and LRU-MIN.

� Lowest Latency First [6]

LLF wants to minimize the average latency by evicting the object with the

lowest download latency �rst. [6] show LAT algorithm what estimates down-

load time and evict objects with shortest download time. This also shows HYB

algorithm, which combines estimates of the connection time of a server and

8
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the network bandwidth that would be achieved to the server with object size

and number of document accesses since the document entered the cache.

� Hyper-G [3]

Hyper-G algorithm uses frequency of access as the primary key, breaks ties

using the recency of last use, and then �nally uses size as the tertiary key.

The idea in using the key-based algorithms is to prioritize some replacement

factors over others. However, such prioritization may not always be ideal. So these

algorithms are only good for a speci�c metric. For example, size parameter is good

for Hit Rate, but it is not good for other metrics. So when we use LFF for the proxy

cache, we get very high Hit Rate, but get poor Byte Hit Rate.

2.3 Function-based Replacement algorithm

The idea in function-based replacement algorithms is to employ a potentially gen-

eral function of the di�erent factors such as time since last access, entry time of the
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object , transfer time cost, object expiration time, object size and so on. Namely,

these algorithms use the object utilization that is calculated by many parameters

which is related to web characteristics. This utilization infers the object popular-

ity indirectly. Because these algorithms consider many parameters, these o�er the

reasonable performance in many metrics to proxy caches. Figure 2.1(b) show the

general process for the function-based algorithms.

� Greedy Dual-Size [5]

The basic Greedy Dual algorithm sorts objects biased on their measured re-

trieed cost H. The object with the minimum value for H is the candidate for

replacement, and when a replacement occurs all the objects get aged by the

current value, H, of the purged object. In this algorithm, parameter H is

slightly di�erent being set to the ratio of the object ( cost/ size ), to account

for the variable size of Web objects. Updating the cache state at each reference

has cost O(logk), requiring a list search.

� Hybrid [6]

Hybrid evicts the object with the smallest function value. Hybrid aimed at

reducing the total latency. A function is calculated for each object that is

designed to capture the utility of retaining a given document in the cache.

� Lowest Relative Value [11]

LRV includes the cost and size of a object in the calculation of a value that

estimates the utility of keeping a object in the cache. LRV evicts the objects

with the lowest value. The calculation of the value is based on extensive

empirical analysis of trace data. If the cost in LRV is proportional to size,

the authors of this algorithm suggests an eÆcient method that can �nd the

replacement in O(1) time, though the cost can be large. If the cost is arbitrary,

then O(k) time is needed to �nd a replacement, where k is the object number.

� Least Normalized Cost Replacement [13]

10



LNC-R employs a rational function of the access frequency, the transfer time

cost and the size.

� Bolot/Hoschka [12]

This algorithm employs a weighted rational function of the transfer time cost,

the size, and the time since last access.

� Size-Adjust LRU [7]

Size-Adjust LRU orders the object by ratio of cost to size and choose objects

with the best cost-to-size ratio. If we use PPS algorithm, which is the practi-

cal version of Size-Adjust LRU, we need the O(log2(cachesize)) time for the

replacement.

The object utilization which used by these algorithms infer the popularity of the

object. But in the most algorithms, this utilization is calculated by estimate value

like a size, a latency, a last access rather than the direct popularity value of object

like the relative access frequency or reference counts through a proxy. Especially in

the case of Size-adjust LRU, this algorithm use the size and the last access number to

get the object utilization. Each of these parameters means the negative correlation

between the popularity and the object size, and temporal locality in a request stream.

Both of these are assumed to be indicative of the future popularity of the object,

and hence reective of the merit of keeping such and object in the cache. But recent

studies [9] suggest that such relationships are weakening and hence may not be

e�ective in capturing the popularity of Web objects.

2.4 Parameters

In the key-based algorithm or function-based algorithm, there are many keys that

a�ect the performance of cache replacement policies. Among others, these factors

include object size, miss penalty, temporary locality, and popularity.

11



� Object Size

Unlike traditional caching in memory systems, Web caches are required to

manage objects of variable sizes. we found the characteristic of size, that is

the preference for small objects in Web access. [8] But this preference seems

to be weakening. [9]

� Miss Penalty

This means the retrieval cost of missed objects from server to proxy, like form

�le to cache in memory systems. But in the web environment, the miss penalty

varies signi�cantly. Thus, giving a preference to objects with a high retrieval

latency can achieve high saving. [6]

� temporary locality

This is the base concept of the cache, i.e., recently accessed objects are more

likely to be accessed again in the near future. This has led to the use of

LRU cache replacement policy. We found the web traÆc patterns to exhibit

temporal locality. [7] [14] But, recent studies have suggested a weakening in

temporal locality. [9]

� popularity

The popularity infers the popular object directly unlike other parameters. But

the popularity of Web objects was found to be highly variable( i.e. bursty ) over

short time scales, so many replacement algorithms don't use this parameter due

to the worry about the cache pollution phenomenon. However, we found that

the popularity is much smoother over long time scales. [16] This suggests the

signi�cance of long-termmeasurement of access frequency in cache replacement

algorithms.

12



3. Lowest Popularity Per Byte

Replacement Algorithm

According to these related works, we found that we must study the function-based

algorithm for proxy cache replacement algorithm. Because Key-based algorithms

give more priority one parameter and can not have the ideal performance of proxy

caches in many metrics. And to suggest a function-based algorithm which has the

good performance, we consider the recent research result that the correlation between

temporal locality or size and popular objects is weakening. In this section, we present

Least Popularity Per Byte Replacement algorithm( LPPB-R ), which is the extension

of SLRU that uses temporal locality and size by the main parameters to calculate

the utilization. This LPPB-R algorithm use object popularity parameter, which is

not considered by SLRU algorithm, from proxy cache directly.

3.1 Overview of LPPB-R

When an object is to be inserted into the cache, more than one object may need

to be removed in order to create suÆcient space. In this case, LPPB-R follows

the behavior of function-based algorithm. Like all other function-based algorithm,

LPPB-R calculates the utilization of each object, then evict the object, which has

smallest utilization. This utilization U(j) of an object j is calculated by the following

model:

U(j) = P (j)=S(j)

where P (j) is the popularity of the object j and S(j) is the size of the object j. We

describe the detail of the popularity in section 3.2. In this model, the utilization

of an object, U(j) represents the popularity per byte. So when the proxy cache

13



wants to the replacement for a new object, the cache evicts the object, which has

the smallest popularity per byte value.

According to this utilization and the cache policy, we can have the following

model for the LPPB-R replacement algorithm in general.

Minimize
X

j2C

D(j)� U(j)

such that
X

j2C

D(j)� S(j) � R

and D(j) 2 f0; 1g

where C means the group of object in the cache when the replacement event occur,

R is the required size for the new object which is to be inserted. Let R � 0 denotes

the amount of additional space in the cache, which must be created in order to

accommodate the new object. And D(j) is the decision variable for object j de�ned

to be 1 if we wish to purge it, and to be 0 if we want to retain it. We can analyze

above formulas by using these notations. If the replacement event occur ( i.e R � 0 ),

the proxy cache selects the object which is evicted. In this case, the proxy cache

makes the sum of objects which are removed to be larger than the R and makes the

sum of popularity per byte to be as small as possible. Briey, the purpose of the

LPPB-R is to make the popularity per byte of the outgoing objects to be minimum.

3.2 Getting the Popularity Value

In this LPPB-R algorithm, the popularity value is the most important parameter

to get the utilization value. And this popularity value considers the long term mea-

surement of request frequency, which is neglected in the other algorithms, especially

in the SLRU. So how to set the popularity value determines the performance of this

LPPB-R algorithm. We set the popularity value by using the information from the

cached object directly, not by using the value from the request stream indirectly.

Namely, the popularity value of the object j changes not by the arbitrary request,

14



but by only the request for the object j. So, This property makes the popularity

value to deal with the long term measurement of request frequency.

In the LPPB-R algorithm, the popularity value can have one of the two-type

values. One is the simple value, and the other is the enhanced value. We describe

the detail of these two-type values. In the following models, P (j) is the popularity

of an object j.

(1) P (j) = R(j)=T

where R(j) is the reference count number of object j through the proxy cache ( i.e.

R(j) shows how popular the object j ) and T is the total request number through the

proxy cache at the time when the new object is to be inserted into the cache. In this

model, we don't use the reference count number directly, but we use the normalized

reference count number, to get the reasonable range of the utilization value. The

reason for this is found in the process which compare the utilization values. When

we compare the utilization values in the implementation, we evict the object which

has not the minimum utilization value, but the maximum unutilization value. If we

use R(j) to get the P (j) directly, the utilization value varies heavily by changing the

popularity value slightly. This behavior is similar to the behavior of the Key-based

algorithm, which weight the one parameter, in this case, popularity value. Then

the popularity value has more priority than the others, and this property prevents

the LPPB-R algorithm getting the reasonable performance in the all metrics. So to

prevent the popularity value being weighted, we use T , which is the total request

number.

(2) P (j) = 1=(�)R(j) ; ( 0 < � < 1 )

where R(j) is the reference count number of object j, and � is the constant for the

impact factor. � can have the value from 0 to 1. This model is in a exponent -like

fashion as a function of the R(j). And the � value adjusts the raising point of the
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Figure 3.1: Popularity values for variable � values

graph. If the � value is near zero, the raising point is near zero ( i.e. y axis ). And

if the � value is near one, the raising point is near in�nity. By using this model

for the popularity parameter, we weight the popularity parameter partially. This

means that we have the popularity threshold. If the popularity of the object is larger

than the threshold, the popularity value is weighted, then this object is evicted very

seldom.

Consequently, if � value is near zero, the increasing point where the priority

of the popularity value increases is near zero and smaller than 5, otherwise if �

value is near one, the increasing point where the priority of the popularity value

increases is in the region which is larger than 100. For example, if � = 0:1 and

the di�erence between R(j) and R(i) is 1, the di�erence of the utilizations become

90. But if � = 0:9 and the di�erence between R(j) and R(i) is 1,the di�erence

of the utilizations become 0:1. If � = 0:9 and we want to make the di�erence of

the utilizations 90, the di�erence between R(j) and R(i) must be more than 65.

Figure 3.1 show this property of � value. So when we use this type, because � value
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a�ects the popularity value heavily, how set the � value determines the performance

of this LPPB-R algorithm. We show the detail experiment about the � value in the

section 4.3. In this paper, we set the � value on the range from 0.3 to 0.5.

In both the models, we use R(j), the reference count number of object j. This

value means the long-term meauserment of request frequency, not shot-term mea-

surement. According to the recent studies [9], we know the relationship of the tem-

poral locality and the popular object is weakening in these days. One reliable reason

for getting this result is the eÆcient client caching. By using the client caching, when

the client has a request for one object, �rst the client checks the client cache whether

the object is in the client cache, then if the object is in the cache, uses that object,

but if not, the client sends the request to the proxy cache. Nowadays, the client like

a web browser has the client cache which has suÆcient size to behave eÆciently. So,

the eÆcient client caching deals with short-term measurement of request frequency

like temporal locality property. Then, to get better performance of the proxy cache,

the proxy cache should deal with the long-term measurement of request frequency.

So, we use the reference count number as the long-term measurement of request

frequency.

3.3 Managing the objects

When we use the function-based algorithm, we must consider how to minimize the

overhead which is made from calculating the utilization value. Generally, tradi-

tional algorithms like LRU or LFU need O(1) time to process the one request. And

key-based algorithms like LFF or LRU-MIN need O(1) time for O(logk) time to

process the one request, and these algorithms need the data update time. So, in

the traditional or key-based algorithms, the overhead which is need to process the

requests is small. But function- based algorithms need the time to process the re-

quest and to calculate the utilization value of the each object. So to design the good

function-based algorithm we must reduce the overhead which is needed to process
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the requests and to calculate the utilization value by managing the objects and the

meta information e�ectively.

Strictly following the LPPB-R algorithm makes the overhead serious. When the

new object is inserted into the cache and the cache needs the replacement event,

the LPPB-R calculates the utilization values of the all objects and evicts the object

which has the smallest utilization value until the cache has suÆcient space. This

operation needs O(k) time, where k is the object number in the cache. So, the

overhead is proportional to the cache size and this method is not practical.

To turn this ideal theory to practical algorithm, we use the multi queue to manage

the objects, not use only one queue. Each queues determine the objects which are

managed by the size of the objects. we use dlog2(size)e to determine the range of

the size. For example, ith queue manages the objects whose size is from 2i�1 to

2i � 1. Thus, there will be N = dlog(M + 1)e di�erent queues of objects, where M

is the cache size. If we divide the queues by dlog2(size)e, when the cache manages

the objects, the cache gets more advantages in determining object size, because the

bitwize operation which uses the size of object is possible. For example, if the size of

the object j is 10byte we present this size 000a by using 32bit. Then, we �nd the 1

in the 4th bit and we insert this object to the 4th queue. For the cache, the objects

in each queue i are maintained as a separate LFU list. And the Meta information

like reference count, size, latency, and etc are attached to each object in every queue

and are used to calculate the utilization value of each object. Figure 3.2 shows the

general structure of the multi queues. Using these queues, when cache �nds the

objects which are evicted, cache does not search the whole queue, but compares

the utilization values for the least frequently used objects of each list. Finally, the

time which is needed to process one request decreases from O(k) to O(dlog(M+1)e),

where k is object number and M is the total size of the cache and LPPB-R algorithm

becomes practical.

If we use this practical algorithm, we have some disadvantage to �nd unpopular
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objects which are evicted. But this disadvantage has limit. If U(i) is the minimum

of the utilization value by the ideal LPPB-R theory and U(p) is the minimum of the

utilization by the practical LPPB-R algorithm, U(p) has the same value or the less

value than 2 � U(i). Namely, this means the following model:

U(p) < 2 � U(i)

Figure 3.3 show a summary of this model. The detail description for this model

is following: First, we assume that the any one queue has the object i which has

the minimum of the utilization value by the ideal LPPB-R theory and the LFU

list header object for this queue is object j. In this case, S(i) < 2 � S(j) and

2 � U(i) > U(j) is true. ( if this condition is not true, the i and j can not exist.

) Then, if the object p has the minimum of the utilization value by comparing the

LFU list header objects for the whole queue, U(j) > U(p) is true. According to these

facts, 2 � U(i) > U(j) > U(p). This happens in the worst case. But in reality,

the value U(p) is so close to U(i) that the performance di�erence between the ideal
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theory and the practical LPPB-R algorithm. We shall illustrate a comparison of the

hit ratios of these two cases ( ideal theory and practical policy ) in the section 4.3.

Notice that the LOG2-SIZE discussed in [3] and SLRU discussed in [7] bears at

least some resemblance to the independently derived LPPB-R scheme. The LOG2-

SIZE scheme always chooses the least recently used items in the nonempty stacks

corresponding to the largest size range. And in the SLRU scheme, the objects in

the queue are maintained as a LRU list. In contrast, the LPPB-R scheme applies

LFU algorithm to each queue and looks at the least frequently used objects of each

stack, and among these picks the object which has the least utilization.

3.4 Avoiding the cache pollution phenomenon

In LPPB-R algorithm, the most important parameter among the many factors,

which are used to calculate the utilization value, is popularity and this value is

determined by the object reference count, which can infer the long-term frequency

of an object. This reference count value has an advantage, that the cache get the
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popularity information of the objects directly by the requests through the cache.

But this parameter, object reference, has a bad characteristic which decreases the

performance. This is that the request is bursty. This property decreases the per-

formance of the cache which uses the LFU algorithm. So, in the short-term period,

the LFU has less performance than the LRU. For example, in the short-term pe-

riod, the reference count value of the popular objects is much higher than the others

which are not popular by the bursty property. In this case, these objects have the

lower probability to be evicted than the others. So, though these objects are not

popular any more and these must be evicted, cache can't evict these objects be-

cause their reference count values have been very high. This phenomenon is called

cache pollution phenomenon. The cache pollution phenomenon occurs not only in

the short -term period, but also in the long-term period. Consequently, to make our

algorithm, LPPB-R more eÆcient than other algorithms, we must avoid the cache

pollution phenomenon.

We show that the objects in the cache are managed by the LFU list. In addition,

we use the LRU list to avoid the cache pollution phenomenon. Namely, the proxy

cache uses two lists, LRU list and LFU list, to manage one queue. The LFU list is

used to calculate the utilization value and to select the objects which is removed,

and the LRU list is used to avoid the cache pollution phenomenon.

In this paragraph, we describe the detail about the avoiding the cache pollution

phenomenon. First of all, the proxy cache checks the least recently used objects

which are in the whole LRU list periodically. If the di�erence between the last

access time of the object and the current time is greater than the threshold value,

the LPPB-R algorithm sets the reference count of the object on new value which

refers that this object is not popular. In our LPPB-R algorithm, when the proxy

cache �nds this object which �ts above situation for the �rst time, we change that

reference count value to 2. When that object meets the similar situation again for

the second time, we change that reference count value to 1 which is the minimum
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value of an reference count value. We use these two steps for the operation, because

we want to give the last chance to the objects which were popular. Figure 3.4

show the whole mechanism for avoiding the cache pollution phenomenon. We put

the period by which the cache checks the LRU list to 10000 requests and put the

threshold value to 1000000 requests.
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4. Performance evaluation

In this section, we present the result of extensive trace driven simulations that

we have conducted to evaluate the performance of LPPB-R. We design our proxy

cache simulator for doing the performance evaluation. This simulator illustrates

the behavior of a proxy cache. That is, when the simulator gets the request from

any client, the simulator parses the request and get the object name. If the object

is in the proxy cache, the simulator deals with the request and calls this case 'hit',

otherwise the simulator sends the request to the original server which has that object

and calls this case 'miss'. In our simulation, we use the traces from NLANR [15].

And to compare the performances, we simulate the LPPB-R algorithm with the

representative algorithms of traditional, key-based, and function-based algorithms.

We select LRU, LFU, LOG2SIZE and Size Adjust LRU for representative algorithms.

We use hit rate, byte hit rate, and reduced latency as the performance metrics.

4.1 Traces used

In our trace-driven simulations we use traces from NLANR [15]. We have run our

simulations with traces from the pb proxy server and the bo2 proxy server of NLANR

since September, 2000. The pb proxy server manages the objects which are from .ch,

.fr, .se, .uk and .com domain and has a 24GB harddisk and a 512MB main memory.

The bo2 proxy server manages the objects which are from .edu, .gov, .org, .mil and

.us domain and has a 30GB harddisk and a 512MB main memory. Both proxy cache

servers have 100MB/s traÆc bandwidth.

We show some of the characteristics of these traces in Table 4.1. Note, these

characteristics are the results when the cache size is in�nite. Namely, since our

simulations assume limited cache storage, the ratios like hit rate , byte hit rate and
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Traces PB server BO2 server

Measuring days 2000.10.03 - 04 2000.09.14 - 20

All requests size 18595227993 B 25607415375 B

Unique objects size 10016257877 B 15363371177 B

All requests number 2366457 2215404

Unique objects number 1183791 969892

Hit Rate 49.976 % 56.221 %

Byte Hit Rate 46.135 % 40.004 %

Reduced Latency 5887966.423 sec 7106974.665 sec

Table 4.1: Traces used in our simulation ( Cache size = in�nity )

reduced latency cannot be higher than the in�nite cache ratios. And we also analys

the traÆcs by the requested object size, then we �nd that almost the requests are in

the range from 256 byte to 2048 byte. And we also �nd that the hit rate in the pb

trace is lower than in bo2 trace, but the byte hit rate in the pb trace is higher than

in bo2 trace. This means that pb trace has more large objects which are requested

frequently than bo2 trace.

We have some assumption to simulate the behavior of a proxy cache e�ectively.

The whole structure of the proxy cache, clients and servers are same as �gure 1.1.

The size of a proxy cache is in the range from 0.01MByte to 500MByte. We assume

that The used traces are from the proxy cache which is located in the position

between user's clients and web servers and that there are not any ICP packet and

other cache interactions. Namely, when an cache miss occur, the proxy cache does

not send the request to the nearest cache by ICP, but send the request directly to

the original server which creates that object. We assume not only that there are not

any other proxy caches between the clients and target proxy cache, but also that

there are not any problems, like congestions and overow bu�ers in the network

which links the proxy cache to the servers. But the transfer rate of each server is

di�erent.
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4.2 Performance metrics and algorithms

We consider three aspects of web caching bene�ts: hit rate, byte hit rate and reduced

latency. By hit rate, we mean the number of requests that hit in the proxy cache as

a percentage of total requests. Higher the hit rate is, more requests the proxy cache

can treat and less requests the original server must deal with. So the overhead of the

server which is needed to process the requests decreases and the number of clients

which is served by this server increases. By byte hit rate, we mean the number of

bytes that hit in the proxy cache as the percentage of the total number of bytes

requested. Hit rate is the parameter to measure the performance of an proxy cache

above the network layer of the OSI 7 layer, but byte hit rate is the parameter to

measure the performance of an proxy cache below the link layer. Higher byte hit

rate is , more network traÆc decreases in the server side. Namely, if byte hit rage

is high, the traÆc overhead of the whole network, except the autonomous system

whose gateway is the proxy cache, decreases. By reduced latency, we mean the

response time, which is reduced by the cache. More latency is reduced, less time is

need for client to get the response for an request. In the recent study, the user don't

want to visit the web site which is loaded for 10 seconds or more time. So more

latency is reduced, more user visit the server. And besides, long latency means that

the packet travel in the network for long time. This also means that the network has

overhead. So more latency is reduced, less overheads the network has. In section 4.4,

we measure this metrics of di�erent algorithms.

We compare the performance of LPPB-R with LRU, LFU, LOG2SIZE [1] and

Size Adjust LRU [7]. LRU and LFU are the representative algorithms of the tra-

ditional replacement algorithm. Both two algorithms use only one simple queue to

manage the objects. Because these algorithms are implemented very simply, the

simulation is very easy and take less time than others, but LFU can not have a good

performance by the cache pollution phenomenon. LOG2SIZE algorithm is applied
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as the representative of the key-based replacement algorithm. This algorithm acts

like LRU-MIN algorithm and uses the object size as the primary key and the last

access time as the secondary key. And this algorithm manages the object by the

multi queue according to the object size. When the replacement event occurs, this

evicts the least recently used object among the objects in the largest size object

queue. The performance of LOG2SIZE algorithm is good at the hit rate, but is not

good at other metrics. To compare between LPPB-R and other function-based re-

placement algorithms, we implement the Size Adjust LRU algorithm. Our algorithm

is the extension of this algorithm. This algorithm uses the object size and the last

access time as the parameters which is used to calculate the utilization. And this

uses a multi queue according to the object size. The performance of Size Adjust

LRU is good at every metric, because this acts like function -based algorithm. Our

algorithm, LPPB-R, is also a function-based algorithm like Size adjust LRU. We use

the object size and the object popularity as the parameters and use the multi queue

to manage the objects. More detail process for LPPB-R is described in section 3.

4.3 Implementation issues on LPPB-R

There are two considerations to implement the LPPB-R algorithm. One is how the

performance of the practical policy di�er from the performance of the ideal theory.

The other is how the � value set to get the type-2 popularity value.

First, we present the result of the comparison between the practical policy and

the ideal theory in �gure 4.1. Finally, we �nd that both of them get the similar

performance in all metrics. In other words, like the description in section 3.3, most

evicted objects which are selected by the practical policy are same objects as the

ideal theory selects by comparing the utilization values of all objects or have similar

utilization values which the ideal theory �nds as the minimum values. But when we

use the ideal theory, if the cache size increases, the calculation overhead increases

exponentially. According to these results, we use the practical policy to implement
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Figure 4.1: Performance comparison between ideal and practical algorithm
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LPPB-R algorithm.

Next, we measure the performance of the all metrics with variable � values to

select the � value for good LPPB-R 2. We use 0.1, 0.3, 0.5, 0.7 and 0.9 as the �

value and apply LPPB-R 2 with these values to both of pb and bo2 traces. This

result are presented in section 4.4. In �gure 4.2, we show the change of the hit rate

by the � value. In bo2 traces, the hit rate is maximum when the � value is 0.7 and

is minimum when the � value is 0.9. But in pb traces, the hit rate is maximum

when the � value is 0.5 and is minimum when the � value is 0.9. So if we set the

� value to the range from 0.5 to 0.7, LPPB-R 2 achieves the best hit rate. On the

other hand, in the byte hit rate and the reduced latency, closer to zero the � value

is, better the performance of the cache is. In both of the pb and bo2 traces, two

metrics follow this feature. Figure 4.4 and �gure 4.6 show this result.

According to these results, we can know the fact, that there are some trade o�

between the metrics for using the � value. Namely, if we set the � value to 0.7

to achieve the best hit rate, the performance in the byte hit rate and the reduced

latency decreases. And if we set the � value to 0.1 to achieve the best byte hit rate

and reduced latency, the performance in the hit rate decreases. So, when we set the

� value, we must consider the balance of the performances in all metrics. We set

the � value to 0.5 in simulation for bo2 traces, and to 0.3 for pb traces.

Last, because of the di�erence of mechanisms for calculating the popularity value,

we divide the LPPB-R algorithm into LPPB-R 1 and LPPB-R 2. LPPB-R 1 algo-

rithm uses the �rst way to get the popularity value, which use the total reference

number. And LPPB-R 2 algorithm uses the second way to calculate the popularity

value, which uses the � value.

4.4 Performance Measurement

We measure the performance of each algorithms in the three metrics by using the

assumptions and our simulator. We present the results of hit rate, byte hit rate, and
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reduced latency sequentially. In the result of each metric, �rst of all, we compare

the performances of the result of various � value. We set the � value to 0.5 for bo2

traces and to 0.3 for pb traces. Figure 4.2, Figure 4.4 and Figure 4.6 the result of

the LPPB-R 2 performance with various � value.

4.4.1 Hit rate

The results show that clearly, LPPB-R achieves the best hit rate among all algo-

rithms across traces and cache sizes. Both of the LPPB-R 1 and the LPPB-R 2 (

0.5 )have the best hit rate. In the result of bo2 traces, if the cache size is 500MByte

hit rate of the LPPB-R is about 53%. And LPPB-R has more hit rate by the value

from 2% to 4% than Size Adjust LRU independently of the cache size. This result

presents that the popularity value makes up for the weak point, that is the weakening

temporal locality, in the Size Adjust LRU.

The traditional algorithms like LRU and LFU have the smallest hit rate among

all algorithms. This result is quite natural since the traditional algorithms don't

consider the characteristics of the Web traÆcs. In the result of bo2 traces, if the

cache size is 500MByte, LFU has less hit rate by 12% than LPPB-R algorithm. On

the other hands, LOG2SIZE, which is the one of the key-based algorithm has high

hit rate. This result is similar to the result of Size Adjust LRU. This show the

characteristic of the key based algorithm which use the object size as the primary

key. In other words, if we use key based algorithms, hit rate is very high, but other

metrics, like byte hit rate and reduced latency, are low. This fact is shown in the

following section.

Figure 4.2 and �gure 4.3 show the result of hit rate.

4.4.2 Byte hit rate

LPPB-R achieves better byte hit rate than Size Adjust LRU, not generally but

partially. But, LPPB-R achieves better byte hit rate than LOG2SIZE which is

key based algorithm or LFU in general. Namely, if the cache size is smaller than
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40MByte LPPB-R achieves the best byte hit rate among all algorithms, but if the

cache size is larger than 40MByte LRU achieves the best byte hit rate among all

algorithms. This result is found in both of bo2 traces and pb traces. The reasonable

reason for this result is that the traces have the large objects which are requested

frequently. Truly, in the bo2 traces the objects whose size is more than 1MByte

are requested three thousands times, and in the pb traces the objects whose size is

more than 1MByte are requested twelve hundreds times. Though the object number

which is more than 1MByte is more in bo2 traces than in pb traces, the large objects

are requested more frequently in pb traces than in bo2 traces. So, in byte hit rate if

the cache size is more than 40MByte, LRU has the best byte hit rate. And according

to the description of section 4.1, because pb traces follow that characteristic more

strongly than bo2 traces, the di�erence of byte hit rate between the algorithms are

larger in pb traces than in bo2 traces.

Di�erently form LRU, LFU can not achieve the good byte hit rate because of

the cache pollution phenomenon. And LOG2Size which use the object size as the

primary key also has low byte hit rate since this algorithm is proper to store the

small objects. This is the characteristic of the key based algorithm. Size Adjust LRU

follows the LRU characteristic because this algorithm use the temporal locality which

is the feature of LRU. The di�erence of the byte hit rate between Size Adjust LRU

and LRU is 1%.

LPPB-R uses the reference count rather than the temporal locality. In other

words, this uses the feature of LFU rather than LRU. Though LPPB-R has that

feature, LPPB-R doesn't follow the LFU characteristic but achieves the reasonable

byte hit rate. Especially, if the � value is near zero, LPPB-R 2 achieves high byte

hit rate. Figure 4.4 show that the byte hit rate of LPPB-R 2 with 0.1 is similar

to that of Size adjust LRU. LPPB-R achieve the better byte hit rate than other

algorithms, in the small-size cache, like the main memory cache for hottest objects.

So if we want to achieve the high byte hit rate rather than the high hit rate, we set
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the � value to the near value from zero and get the high byte hit rate.

Figure 4.4 and �gure 4.5 show the result of byte hit rate.

4.4.3 Reduced Latency

Another major concern for proxies is to reduce the latency of HTTP requests through

caching, as numerous studies have shown that the waiting time has become the pri-

mary concern of Web users. So we compare the algorithms by the reduced latency.

To measure the performance of this metric, we use the assuntions which are intro-

duced in section 4.1. Namely, if the cache hit occurs, the request is processed in

cache and not sent to the original server, so, we save the time which is needed by

transferring data from server. We call this time the reduced latency.

In this metric, LPPB-R has much better performance than Size Adjust LRU. In

the bo2 traces, if the cache size is 500MByte, the di�erence of the reduced latency

between LPPB-R and Size- Adjust LRU is 2 million seconds. The e�ect of this value

is equal to saving about one day for one thousand users. This is very important factor

for users to select the web site. Size Adjust LRU follows the LRU property in byte

hit rate, but in reduced latency this doesn't follow that property. The reason of

this result is the high priority of the size parameter. So, in this case, Size Adjust

LRU follows LOG2Size property. On the other hand, LPPB-R which has the LFU

property gets better performance than LFU. Especially, if we set � value to the

value which is near to zero, the reduced latency of LPPB-R 2 can be closer to that

of LRU. In the real case like PB traces( �gure 4.7 ), we �nd that LPPB-R 2 has the

similar reduced latency value to that of LRU.

But, like the result of the byte hit rate, in the reduced latency LRU has the

best reduced latency among all algorithms. The characteristic of the traces that

is described in section 4.4.2 can be the one reason for this result. In addition,

more objects which have the large latency the proxy cache has, more the reduced

latency value increases. Because of these features of traces and caches, the traditional
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algorithms like LRU and LFU, which are simple and pair for all objects, achieve

better reduced latency than other algorithms except our LPPB-R algorithm. On

the other hand, LOG2Size which is key based algorithm also has the least reduced

latency.

Figure 4.6 and �gure 4.7 show the result of reduced latency.
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5. Conclusion

This paper introduces the new function-based replacement algorithm, LPPB-R for

the web proxy cache and shows that it outperforms existing replacement algorithms

in many performance aspects, including the hit rate and the reduced latency.

LPPB-R algorithm uses the object popularity value and the object size to cal-

culate the utilization value. The purpose of the LPPB-R is to make the popularity

per byte of the outgoing objects to be minimum. This popularity value infers the

long-term measurement of request frequency to complement the weak point in the

temporal locality. LPPB-R uses a multi queue, and each queue is managed by

LFU. It is simple to implement and accommodates a variety of performance goals

by changing the � value. Through trace-driven simulations, we show that LPPB-R

algorithm outperforms other replacement algorithms and is practical. Especially, in

the comparison between LPPB-R and Size Adjust LRU, we show that the popularity

value covers the weak point in the Size Adjust LRU which uses the temporal local-

ity. LPPB-R achieves the best hit rate among all replacement algorithms including

the Size Adjust LRU and the better reduced latency than Size Adjust LRU by one

million second with the 500MByte cache size. And LPPB-R has reasonable byte hit

rate.

In addition, we show that LPPB-R is easy to adjust the performance to needs

of the proxy cache. This feature is possible by the characteristic of � value. In

the simulations, if the � value is near to zero, hit rate is low but byte hit rate and

reduced latency is high. Otherwise, if the � value is near to one, byte hit rate and

reduced latency is low. The hit rate is highest between 0.5 to 0.7.

Consequently, we conclude that using the LPPB-R is better than other algo-

rithms in the proxy cache which treats the traÆcs for the long-time period.
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6. Future Work

Our LPPB-R has the feature of LFU. It means that the LPPB-R can meet the

cache pollution phenomenon though the LPPB-R uses the measurement of long-

term frequency. According to this we suggest the mechanism to avoid the cache

pollution in section 3.4. But the e�ect of this mechanism is not presented in our

simulation greatly, because it is applied to the objects individually and the period

of the used traces are short. So to simulate with the long-time trace, for a month or

a year is our ongoing work. And we are trying to apply this mechanism not to the

individual objects, but to the bulk objects like domain-based objects.

In addition, to adjust the cache performance to the web traÆc, we are designing

the dynamic popularity calculation algorithm. This work needs more web traÆc

evaluations and simulations with the various � value.
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³À »ÈÐ %K�

áÔ|ÃÌr� H�/'\�¦ 0Aô�Ç ��s�àÔ éß�0A_� þj�è ���l��̧ Äº��� @/�̂

·ú��¦o�7£§

þj��H_� �Z4×¼ü<s�×¼ R/Û_�;�¤µ1Ï&h���� ��6 x�ª�õ��8Ô�¦#Q"f, R/Û �̧ÚÔ#�oàÔ[þt�̀¦H�~Û¼�

��H ë�H]j�� ×�æ¹כr� ÷&�¦ e����. R/Û H�/'��H "f!Q�Ð×¼\�¦ ×�¦s��¦, W1àÔ0>ß¼ àÔA�i���ª��̀¦

×�¦s��¦, ��î�r�Ð×¼���H r�çß��̀¦ ×�¦{9� Ãº e����. s��Qô�Ç R/Û H�/'_� $í
0px�Ér @/�̂ ·ú��¦o�

7£§\� _�K�"f %ò
�¾Ó�̀¦ ú́§s� ~ÃÎ��H��. �̧Zþt±ú�, ú́§�Ér @/�̂ ·ú��¦o�7£§[þts� R/Û H�~Û¼�̀¦ 0AK�

"f ]jîß�÷&%3��¦, s� ·ú��¦o�7£§[þt�Ér ß¼l�, r�çß�&h� 0Au�$í
, YUs����r�ü< °ú �Ér �:r����� �©�

\�"f_� :£¤$í
[þt�̀¦ ��6 x���HX<, s�[þt�Ér �̧ÚÔ#�oàÔ_� ���l��̧\�¦ &ñ
�l� 0AK�"f ��6 x�)a

��. :£¤y� Size Adjust LRUü< °ú s� ß¼l��� r�çß�&h� 0Au�$í
�̀¦ ��6 x���H ·ú��¦o�7£§ \�"f

ü<°ú s�f��]X�&h�������l��̧��H��6 x�t�·ú§>��)a��.Õª�Q��þj��H_����½̈\� ��ØÔ���s��Q

ô�Ç �:r����� �©�\�"f_� :£¤$í
[þtõ� ���l��̧çß�_� �'a>��� áÔ|ÃÌr� H�/'\�"f �'a¹1Ï���� ���K�

f���̀¦ ·ú� Ãº e����. s� ���õ���H 9þt��s����àÔ H�/'�� ò́Ö�¦&h�Ü¼�Ð 1lx�������"f Òqtl�>� �)a

�.���s	כ s� �7Hë�H\�"f��H s��Qô�Ç ���&h��̀¦ �Ð¢-a�l� 0AK� Dh�Ðî�r ·ú��¦o�7£§��� ��s�àÔ éß�

0A_� þj�è ���l��̧ Äº��� @/�̂ ·ú��¦o�7£§( LPPB-R )�̀¦ ]jîß� ô�Ç��. Äºo���H ���&h��̀¦ �Ð

¢-a�l� 0AK�"f |�� r�çß�éß�0A_� ÅÒl�$í
 8£¤&ñ
�̀¦ 0Aô�Ç ���Ãº\�¦ ��6 x�%i���. Õªo��¦ áÔ|ÃÌ

r� H�/'_� 6 x�̧\� ú́�>� $í
0px�̀¦ �̧]X� ½+É Ãº e���̧2�¤ ���Ãº\�¦ [O�&ñ
½+É e����. s�\�  »	·¡

#�"f, Äºo���H ��×�æ @/l�C�\P��̀¦ ��6 x�%i��¦ H�/' �̧%i��̀¦ }��l� 0Aô�Ç l�ZO��̀¦ &h�6 x�%i�

��. Õªo��¦ Äºo���H àÔYUs�Û¼\�¦ ì�r$3����H z�́+«>�̀¦ :�xK�"f ·ú��¦o�7£§[þt çß�_� $í
0px�̀¦ q�

�§ �%i���.
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ḈÔ���+ K±Ó

s��7Hë�Hs����̧l���t� ú́§�Érì�r[þt_� �̧¹¡§s�e��%3�_þvm���. �̧��Hì�r[þta�y����×¼wn�m���.

���$� ÂÒ7á¤ô�Ç $�\�>� ú́§�Ér ����9ü< Ø�æ�¦�Ð �½Ó�©� C��9K� ÅÒr��¦ $3��� õ�&ñ
 1lxîß� #��Q

�̧�Ð �Ð¶ú�(R ÅÒ��� ~ÃÌ@/��� �§Ãº_��a� y����×¼wn�m���. �§Ãº_��_� \P�&ñ
õ� ��ØÔgË>�Ér $�\�

>� ú́§�Ér ³ð�:rs� ÷&%3��¦ �½Ó�©� 6 xl�\�¦ ÅÒ$4�_þvm���. �̧��H{9��̀¦ ô=$�y� ¶ú�x�r��¦, �����

ô�Ç Ö�©6£§Ü¼�Ð �½Ó�©� $��B\�¦ ú́���ÅÒr�~�� ~ÃÌ½© ñ �§Ãº_��_� ���FKô�Ç Ø�æ�¦ü< �̧���\� y����

×¼wn�m���. ¢̧ô�Ç ���]j�� ÂÒ{��\O���H @/�oü< Ö�©6£§Ü¼�Ð @/K� ÅÒ��� Ñþ�î�r<Éª �§Ãº_��_� Ø�æ�¦

ü< t��̧\� y����×¼wn�m���.

2�̧�1lxîß� 1lx�¦ 1lx|ÃÌ�%i�~�� z�́+«>z�́_� ���C�_��[þt, 1lxl�[þt Õªo��¦ ÊêC�[þt\�>��̧ y��

��×¼wn�m���. �½Ó�©� ±ú�
��Ðî�r Ø�æ�¦ü< ú́§�Ér s�K�d��Ü¼�Ð $�\�>� ú́§�Ér �̧¹¡§�̀¦ ÅÒ$4�~�� ô=

 ñ+þA, z�́+«>z�́_� @/�©�Ü¼�Ð+� Õþ�e���̀¦ ���Ö¼�� �èo�\�¦ |9��Q @/t�ëß� ÕªA��̧ �½Ó�©� ú́§s�

Òqty�� K�ÅÒ��H Äº�&³s�+þA, Õªo��¦ �̧6 x����"f�̧ ½+É{9��Ér �����H Õªo��¦ ���Ér��|ÃÐ[þt\�

>� �̧¹¡§�̀¦ ú́§s� ÅÒ��H �©� ñ+þA, �½Ó�©� a�¦��î�r 1pwô�Ç Õª�Q�� M:�Ð��H ���t�ô�Ç �ª�Äº+þA, ÊêC�

Òqty���̀¦ ú́§s� K�ÅÒ�¦ z�́+«>z�́\� @/K�"f �½Ó�©� ú́§�Ér ����â
�̀¦ æ¼���"f�̧ ¶nq¶nqy� �����_� {9�

�Ér]j@/�ÐK�?/��HF����s�+þA,Äºo�z�́+«>z�́_���H���\�e��#Q"fÑütP:�����"f�QÖ�¦���Ãº+þA,

�¦1px�<Æ�§ M:ÂÒ'� �2;½̈%i��¦ Áº��H{9�s���H ú̧� K� èq Ãº e����H 6 x���s�, î�r1lx�̧ a%~����¦

/BNÂÒ�̧ \P�d��y� Õªo��¦ �½Ó�©� µ1ß�Ér �̧_þv_� ��HI�, z�́+«>z�́_� ����o��H �̧¿º ~ÃÎ��¤ÅÒ�¦ }��

?/�Ð+� {9��̀¦ ú̧� K��·p 6 xÅÒ, �̧��H{9�\� \P�d����� �©�\P�s�+þA, ��ü< q�5pwô�Ç ì�r��\�¦ r����K�

"f E�l�\�¦ ú́§s� ��ü��~�� F�[O�s�, Õªo��¦ t��FK�Ér �<ÆÒqt�Ér ��m�t�ëß� �7Hë�H�̀¦ æ¼��HX< ú́§

�Ér �̧¹¡§�̀¦ ÅÒ%3�~�� 5px"é¶+þA, �½Ó�©� Êê ü��>� Ö�©�¦ ��m���H F�Ö�æs�+þA, µ1ß�Ér �̧_þvÜ¼�Ð ÜãM

ÜãM�>� ¶ú�������H 1lx�Érs�. s� �̧¿º\�>� ��r�ô�Ç��� y����_� ú́��̀¦ ���½+Ëm���. Õªo��¦ °ú 

�Ér z�́+«>z�́�Ér ��m�t�ëß� �½Ó�©� $�\�>� ú́§�Ér �̧¹¡§�̀¦ ÅÒ$4�~�� �â
 ñ+þA, 7áx�&³s�+þA, ÅÒ%ò
s�

+þA +þA���s�+þA, �½Ó½©+þA, �©�$3�s�\�>��̧ y����×¼wn�m���.

��_� �2;½̈[þt, �â
$3�, $í
���, 5px�Ér, 6 xÁº, ô�ÇI�, >�I�1px °ú �Ér U�́�̀¦ ���#Q�:r ���z��õ��¦

�2;½̈[þt �̧¿º\�>� y����_� ú́��̀¦ ���½+Ëm���. Õªo��¦ s���� ���C�\�¦ b��#Qï�r [j¢-a, �½Óò́, 1lx



�B1px_� �̧��H ÊêC�[þt�� �¦ú́���.

�Ðï�r��, }� ��\�>� e��#Q"f &ñ
ú́� �è×�æô�Ç 1lxÒqts���. q�2�¤ b��#Q4R e��#Q"f ú́§�Ér|	� K�

ÅÒt� 3lwÙþ¡t�ëß� �½Ó�©� \P�\�"f t�&� ú< ×�¦>�, �-�̧ �-_� ÀDK�̀¦ �̀�5g �Ð§4�. Õªo��¦ ��|½Ó

���H #Q Qm� ��!Qt�, �¦1px�<Æ�§ M:ÂÒ'� Ä¡¤ b��#Q4R t�?/Ö¼�� �¦ú́�����H ú́�ô�Ç���, ³ð�&³

ô�Ç��� 3lwK� ×¼§4�W1¹כ. s� �7Hë�H�̀¦ yn=#Q"f ��|½Óô�Ç����H ú́��̀¦ ×¼wn�m���.

��t�}��Ü¼�Ð �½Ó�©� ?/�� ü@�ÐÖ�¦M: Õªo��¦ jËµ[þtM: ��\�>� 6 xl�\�¦ ·¡¤1lq�� ÅÒ�¦, �&³

F�_� ?/�� |̈c Ãº e���̧2�¤ �̧ü<ÅÒ%3�~�� ��|½Ó���H ���\�>� y����_� ú́��̀¦ ���½+Ëm���.
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